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Parallel Line Microstrip Filters in an
Inhomogeneous Medium

DOMINIQUE POMPEI, OLIVIER BENEVELLO, AND EDOUARD RIWER

Abstrae—I%raUel coupled microstrip fines in an irrhomogeneons

medbnn are studied. The quasi-static cirpacitancc is shown to be finear with

regard to the dielectric constant q,, simplifying the formafism used for

anafyzing microstrip fiiters.
The electromagnetic advantages of the homogeneous medium carry over

to the fnhomogeneous medbrm. ‘Ms resnft is obtained by eqnaking aff tbe
velocities of the propagation modes.

1
B

1, INTRODUCTION

A NUMBER OF interesting properties have been

found recently in the course of a study of microstrip

filters. Some of these properties facilitate study of these
I

filters; others should lead to new applications.

Microstrip filters in an inhomogeneous medium have

not been studied as fully as stripline filters in homoge-

neous medium, in spite of important basic papers devoted

to this subject [ 1]–[6]. The design of microstrip filters at

frequencies above 1 GHz should take into account the

existence of hybrid modes [7]–[9]. In order to reduce the

problem at first, we made the usual assumption of a

quasi-TEM mode. Higher order modes are introduced

later, after the filter design using the quasi-TEM mode

[7]-[9], [13].

II. SUMMARY OF THE NEW RESULTS

Many devices previously studied [3] have a set of N

parallel coupled propagating lines. In microstrip technol-

ogy, we are interested in a set of parallel microstrips

deposited on a dielectric substrate. The metallized lower

dielectric surface is grounded. The whole system is

Manuscript received June 2, 1977; revised September 21, 1977.
The authors are with the Faculte des Sciences, Laboratoire

d’Electronique, Universit& de Nice, Nice, France.

Fig. 1. Adjacent microstrip lines.

shielded by a conducting box (Fig. 1). Various filter

configurations are shown in Fig. 2. Our approach [10]< 12]

may be summarized as a) an extension of Kirchhoff’s

theory to a system of N parallel coupled transmission

lines, and b) the introduction of boundary conditions,

reducing the system to a two-port filter, whose response

will be calculated.

The new results may be summarized as follows.

1) Some parameters are perfectly linear with regard to

the substrate q. This point should allow easier studies for

various values of c,.

2) A property of the various propagating modes allows

the application of a new and simple formalism, making it

possible to study filtering structures having a substantial

number of lines coupled together.

3) The parallel microstrip structures in an inhomoge.
neous medium behave like structures in a homogeneous

medium. The advantages of the homogeneous medium

(such as width and regularity of the band) are maintained,

0018-9480/78/0400-023 1$00.75 01978 IEEE
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Fig. 2. Microstnp filters using parallel coupled lines.

and the advantages of the inhomogeneous medium

(miniaturization) are also preserved.

III. RECAPITULATION OF mm GENERAL FORMALISM

CONSTRUCTED FOR FILTER ANALYSIS

A review of the earlier formalism [ 10]~ 12] for quasi-

TEM modes will first be given.

A system of N parallel microstrip lines, Fig. 1, is char-

acterized by its matrix [E] of eigen and mutual electrical

influence coefficients

“]”E: “::1

and by its matrix [M] of eigen and mutual magnetic
influence coefficients

‘M]=Ei 2:::1

Let ~(z) and ~.(z) (i= 1,... ,N) be the current in line i

and the voltage between line i and the ground at the

abscissa z.

Two equations in current and voltage maybe formed.

($[U]+(J’[E][M] )I(Z)=O (1)
\ -- ,

Fig. 3. Symmetrical adjacent rnicrostnp lines.

(f[u]+qlq[+(z)=o. (2)

[U] is~he unit matrix, a is the angular frequency, and ~(z)

and V(z) are the vectors of components Ii(z) and ~.(z)

(i=l,...,N).

Taking into account the formal analogy [11] of (1) and

(2) with Lagrange’s equations describing a coupled system

having N degrees of freedom, it is possible to say that:

1) The set of N coupled lines has N propagating eigen-

modes. There is a basis of eigenvectors in which (1) and

(2) are uncoupled.

2) Each mode J is obtained by applying to each line i

an eigenvoltage KJ (respectively, an eigencurrent lZJ), The

set of ~! (i= l,... , N) gives the eigenvoltage vector ~-’,

3) An eigenphase velocity VJ, identical on all the N

lines, corresponds to the eigenvector ?J.

If one puts

[G]=[E][M] (3)

the FJ and OJ are directly related to the eigenvectors and

values of [G].

Let [EO] be the matrix [E] in the case, purely hypotheti-

cal, where the dielectric substrate is air (e, = 1). It is

known [14], [15] that, if the dielectric is not a magnetic

one

[M]=j[EO]-l, c is li@t velocity in vacuum. (4)

As a basic tool for explaining the improvements, we

assume here the starting point of the previously published

formalism. It is characterized by the following.

1) The acquiring of a technique of numerical computa-

tion for [Eo] and [E], for each given configuration of

uniform parallel microstrip lines on a dielectric substrate

and in a shielding box. This computation has been ex-

tended to adjacent devices having eight coupled lines by

using a technique previously explained [16].

2) The determking of the eigenvectors and eigenvalues

of the operator

[G]=@[%-’. (5)

The above formalism allows us to treat any configura-

tion of coupled lines with different line widths w, and

different spacing between lines S,,i~,.

In practice, this formalism is very difficult to apply

when the device has no symmetry with regard to vertical

mid plan (Fig. 3). It is much more difficult to apply when
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Fig. 4. Suspended microstnp lines.
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the number of coupled lines is more than three. Indeed, 4

the computation of the eigenvalues of [G], absolutely any ,

matrix, becomes more and more difficult.

The properties we found recently, and which are shown o
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now, allow very important improvements in this for- Fig. 5. Coefficients of the matrix [E]. Five adjacent microstrip lines.
For geometrical dimensions, see Fig. 8.realism and part~cula~ly a very important simplification of

the calculations.

IV. MAIN PROPERTIES IMPROVING FORMALISM

The results affect largely the adjacent lines, but we also

give information for suspended microstrip lines (Fig. 4).

A. Linearity in Terms of the Dielectric Constant

We studied the evolution of the matrix [E] with regard

to a variation of the relative dielectric constant (~,= 1–70).
This study is based on the numerical resolution of a large

number of configurations with as many as eight coupled

lines. We considered a wide range of parameters

A, 1?,111/ H, ~., Si,i+ ~ (Fig. 3), with asymmetrical struc-

tures ( Wi # Wj and 5’j,i+ ~# ~.~+ ~). Tight and low cou-

plings are considered.

1) Proper@ 1: For a given configuration, the matrix [E]
is a linear function of the relative dielectric constant c,

[E]=(c,-l)[A]+ [EO]. (6)

The matrix [A] depends on the dimensions of the struc-

ture but is independent of e,. This appears clearly on the

graphs giving the absolute values for particular

coefficients of the matrix [E] versus q for five (Fig. 5) and

six lines (Fig. 6). Many similar results can be quoted.

It is important to note that, with this property, having

calculated the electrical matrix [EO] in vacuum and [E] for

one substrate, we can calculate [E] for any c,.

Property I was partially published for one or two cou-

pled lines [17]. We have verified (6) for suspended micro-

strip coupled lines. We supply some data about this case

(Fig. 7) but study of these structures must be extended.

2) The matrices [E] and [EO] are real and symmetrical.

,4

,2

.

,

,

,

2

.

,,

,0

.

Fig. 6. Coefficients of the matrix [E]. % adjacent rnicrostrip lines.

p,, Into%

la
—.—

I c. ~

‘ es.

I
1“

E
/Q ‘ “

“/
o.<~::””:Simple algorithms to diagonalize these matrices may be z

used. With such algorithms, we calculated the matrices

[E]~ and [EO]~ for many configurations. We have consid- -’ $’ ., 70 c. -

ered structures from two to eight adjacent coupled lines Fig. 7. Coefficients of the matrix [E]. Suspended microstrip lines.

(Fig. 3) or from two to four suspended coupled lines (Fig.

4). They were calculated with many dielectric substrates

and with tight couplings.

Proper@ 11: For a given configuration, the diagona-
[E]d=(Er-l)[A]d+ [Eo]d. (7)

lized matrix [Ed] is a linear function of the dielectric The matrix [A]~ depends on the structure dimensions,

relative constant 6,. but not on e,. We give graphs of the coefficients of the
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Fig. 8. Coefficients of the matrix [E]* Five rnicrostrip lines.
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Fig. 9. Coefficients of the matrix [E]d. Six microstnp adjacent lines.
For geometrical dimensions, see Fig. 6.

matrix [E]~ versus c, for five and six coupled lines (Figs. 8

and 9).

From the above results, having calculated the matrix

[E]~ for two particular valuesane of which is c, = l—the

general calculation of [E]d becomes very easy.

This property will be important for the calculation of

the eigenmode velocities and for the improvement of the

formalism.

B. Proper@ III—Similarity of the Eigenvectors of [E] and
[Eo]

From the two properties previously given and especially

the second one, we have shown that the matrices [E] and

[EO] have the same eigenvectors. With property II, we can

write

C, =(6, – l)ai+ CO, (i= 1,””” ,N), N=number of lines.

(8)

But, we also have

i >j* Ci > Cj, a,> Uj, CO,> Coj (Figs. 8 and 9).

If TN is the eigenvector of [E] with the greatest eigenvalue

C~, we have

TABLE I
POTENTIAL (IN VOLTS) TO APPLY ON EACH Lnw TO OBTAIN

EIGENMODES

NUM8ER OF COUPLED

LINES

EVEN MODE ODD MODE

Adjacent Lines

4

Adj scent Lines

5

Suspended lines

4

Suspended lines

3

+ 0.75 -1

+1 + 0.75

+1 + 0.75

+ 0.75 -1

+1 + 0.7

D + 0.9

-1 +1

0 + 0.9

+1 + 0.7

- D.4

+ 0.8

-1

+ 0.8

- 0.4

+ 0.5 + 0.5

+ 0.5 - 0.5

+ 0.5 – 0.5

+ D.5 + 0.5

+ D.57 - 0.42

+ 0.58 + 0.81

+ 0.57 - 0.42

– 0.5 -1

+1 – 0.5

–1 + 0.5

+ 0.5 +1

-1 + 0.8

– 0.s -1

0 0

+ 0.s +1

+1 – 0.8

- 0.5 - 0.5

+ 0.5 - 0.5

- 0.5 + 0.5

+ 0.5 + 0.5

- 0.707

0

+ 0.707

(TN[[E]TN)= CN=(Er– l)a~+ CON.

If TN is not an eigenvector of [EO] we have

<T~l[E.]T~)<C.iv

and with (6), we cannot obtain (8). Thus TN must be an

eigenvector of [EO]. This demonstration is then repeated

for N – 1, and so on. As an example, we give eigenvectors

of [E] and [ EO] for two adjacent microstrip structures and

for two suspended microstrip structures (Table I).

V. SIMPLIFIED FORMALISM FOR STUDYING

MICROSTRIP FILTBRS

A. Velocities of Propagation and Characteristic Impedance

Matrix

From property III, we can write many useful relations,
If we note [E]d and [Eo]d, the diagonalized forms of the

matrices [E] and [EO], we have

[E]~=[T]-’[E][T]

[EO]~=[T]-l[E] [T],

(9)

(lo)

So we obtain

[T]-’[G][T]=@JqJ;l=[G]d. (11)

Thus [G] is diagonalizable and has the same eigenvectors

as [E] and [EO].

From [ G]d we can easily calculate the velocities VJ of

each propagating mode [12].
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bl=mw]j’]’”
with

[ 1

[0]= “ q 0\

o “UN

So the determining of velocities is greatly improved.

(12)

Then, from property II, it is possible to calculate the

velocities for all values of c,. This result is very important.

Similarly, [T] being the diagonalization matrix of [G],

we can show that the eigencurrents ~J are the eigenvectors

of [E] and [EO].

For the determining of filters, we introduced [14] a

characteristic impedance matrix [ZC] defined by

~zl= [E]-’[T][B][T]-’
c ?

u

with u = pulsation of the wave (13)

F‘2‘:”0[[l?] ’=@[G]d= .

[ZC] can be written in a diagonalized form

[[ J%[%ldl-”2
[z.].= ~ ~ (14)

The elements Z~ of [Zc]~ are the characteristic imped-

ances of the system, with as a particular case that of the

symmetric coupler

Z:=z
lx> even-mode characteristic impedance

Z:I = zoo, odd-mode characteristic impedance.

B. Application of Property III to N Coupled Lines

Equations (1) and (2) have solutions [10] which are

generalizations of Kirchhoff’s relations for a single line.

From these equations, we have written the general form of

the impedance matrix [Z] for a system of N coupled lines

of length L.

From the relations given by property III, we can obtain

a simpler formalism

I[z]=[T=] -y’ 1,;ld[T’]
–1 (15)

c

with

(16)

where [U] is the unit matrix, and

exp (j[B]L)=

235

exp (j~ lL,) . . . 0

0 exp (j~ llL)

\
\

1“
\

o exp (j~~L)

C. Application to Filters

If we know the N x N matrix [Z] defined by

ITN=’z’l%l
where ~(z) and ~(z) are the voltage and current vectors

at the abcissa z (see (1) and (2)), We only have to apply at
the ends z = O and z = L (Fig, 1) any adequate boundary

condition to construct a filter like those shown in Fig. ;!,

[Z] degenerates in a 2x 2 impedance matrix [Z]’ of a

two-port system. Well-known transformations allow us to

obtain the scattering matrix [5’], then the wanted transfer

function.

Important Note: In the whole study it is found that to

obtain the transfer function, the only fundamental opera-

tions are to calculate the eigenvalues and vectors of [E]

and [EO].

The above procedure being very simple, it is possible to

provide a looped program on a. computer giving, by

successive corrections, a filter corresponding to a give o.

pattern. So analysis and synthesis may be coupled.

VI. REMARKS ON THE ABOVE PROPERTIES

As we noted before, properties I and II resulted from a

systematic study of many configurations. This fact

allowed us to estimate the precision of results.

We noted therefore that the linearity of [E] as a func-

tion of the dielectric constant C, was well proved for the

coefficients of [E] such as E, i, Ei,i + ~, Ei, ~+2. This fact is

less evident for the other coefficients Ei,j (~> i + 3), but it

is a consequence of the precision of the method; a change

in the mesh [12] could improve the result if necessary.

On the other hand, for the linearity of [Ed] as a function

of e,, it has been very well proved in the various cases

studied with configurations having asymmetries in the

cross section.

This comes from the fact that diagonal terms of [E] are

much larger than terms such as Ei,Z+ ~o“ “ .

Finally, it can be noted that the first two properties

have been established by calculation on a computer as

opposed to property III which has been mathematically

proved from the two previous ones.

VII. EQUALIZATION OF EIGENMODE PHASE

VELOCITIES

A. Geometrical Method

Let us consider a configuration with HI = H (Fig. 10).

As [A] is independent of the dielectric constant, it is
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Fig. 10. Adjacent microstrip lines with HI= H.

unchanged when the positions of the dielectric and the air

are interchanged.

In the first case (Fig. 10(a)) we have

[E]=(c,-l)[A]+[ EO].

In the second case (Fig. 10(b)) we have

[E](=(c,-l)[A]+ [EO].

If we superimpose the two cases, we get

[E]+[E]’=2(C,-1 )[A]+2[EO]=(C,+ 1)[EO]

because it is a similar process of superposing a homoge-

neous configuration filled with air (c, = 1), and a homoge-

neous configuration filled with a dielectric t,. So it is

inferred that

if HI = H, then [A]=~[EO]. (17)

Let us consider now (12)

[O]= C[[E&[E]j’]’i2.

From (17) we get

C,+l
[E]=~[%],

(.+1
then [E]d= ~[E~]d.

So we note that

[0]= ()Er+ 1 lfz
— C[ u], [U] being the unitary matrix.

2

(18)

Therefore, if HI= H, whatever the number of coupled

lines and whatever the geometrical configuration, all the

propagation velocities of various modes are equal. This

property appears to be very interesting because it induces

A

04

0,

%

3=%+%0?. 7“ ?% %

Fig. 11. Velocities of propagation. Six symmetrical adjacent microstrip
lines. c,= 9.6.------Odd mode.— Even mode.

,, 1
0 5X* ‘% % “% ‘% % Y.

Fig. 12. Velocities of propagation. Three symmetrical adjacent fines.
q = 9.6. VEven mode. ■Even mode. ●0dd mode.

a further simplification of the previous formalism; indeed,

we obtain in this case the same properties as for the

homogeneous case.

Thus for example, we know that the directivity of

couplers in an inhomogeneous medium is generally bad;

the attenuation of the directivity with increasing frequen-

cies comes from the divergence between the two propaga-

tion velocities of even and odd modes.

In the case HI= H we will obtain a very interesting

improvement.

Furthermore, we note that this equalization of velocities
has been previously considered after experimental results

by some authors [ 18]<20], but it remained to our knowl-

edge only a supposition.

We give some graphs describing the normalized mode

velocity as a function of HI/H. On these graphs the

equalization of velocities, when HI = H, is easily seen

(Figs. 11 and 12).

B. Equalization of Phase Velocities with an Overlay Method

Another method can be used for equalizing the veloci-

ties; it consists of coating the strip with a thin layer of
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Fig. 14. = V,/= VOfor two suspended microstrip lines.

dielectric substrate with a larger e, (Fig. 13). This tech-

nique allows us to obtain a matrix [E] equivalent to the

matrix of a homogeneous medium, because the constant

Ceffof the propagation medium is greatly altered.

The equalization of the velocities can be obtained either

by varying the thickness of the layer for a fixed value of

the permittivity, or by varying the dielectric constant of

the overlay for a fixed value of its thickness (Fig. 14) for

suspended microstrip lines.

C. Characteristic Impedances

In this study we were led to calculate the electrical

characteristics of many coupled line systems. So we have

plotted many graphs giving the characteristic impedance

of each propagating mode as a function of geometrical

dimensions.

We give here graphs for a coupler in the adjacent

technique, with an equalization of velocities (Hl = H)

(Fig. 15) and for a three coupled line device (Fig. 16).

In this last case, it is evident that there are two even-

propagating modes and an odd one. We can provide

many other similar graphs.

VIII. CONCLUSION

New results about N coupled rnicrostrip lines in an

inhomogeneous medium appear in this paper. The eigen-

modes of propagation are well acquired; their velocities

80

60

s/=4
.— 025 / H

!*
035 /“<’1

/2\ /’\ .0..

23’7

40/ 11

50 70 90 110 no L.

Fig. 15. ZOOversus ZW for two adjacent microstrip lines with H,= H.

n} ZW

Fig. 16. Z@ versus Zm for three adjacent rnicrostrip lines with HI = H.

are easily calculated. The problem is simplified with the

linearity of the matrices [E] and [E]d versus e,.

All these properties improve the theory of the rnicro-

strip filters. In particular, the equality of the eigenveloci-

ties, when the dielectric substrate and the vacuum have

the
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The Characteristic .Impedance of Rectangular
Transmission Lines with Thin Center

Conductor and Air Dielectric
CLAUDE M. WEIL, MEMBER, IEEE

Abstract-The characteristic impedance of large-scale rectao@ar strip

transmission line facilities used for such purposes as EMI soaceptibtity
teatiog, hiologieaf exposures, etc., is diaeussed. These Iinea are char-

acterized by a thin center conductor and assair dielectric. Impedance data
obtained by earfier workers, using different analytical and numericaf

techniques, are revfewed and compared. Exact data are available for the

problem involving a center conductor of zero thiekn~ while for the
center conductor of fiite thickn~ data are avaifable which are accurate

to less than 1.25 percent.

I. INTRODUCTION

R

ECTANGULAR COAXIAL transmission lines

which contain a propagating transverse electromag-

netic (TEM) field are finding increasing application in

such areas as EM susceptibility and emissions testing,
biological effects of RF exposure, and calibration of

radiation survey meters and electric field probes. Such

lines possess an air dielectric with a thin center conductor,

thereby maximizing the test space available between con-

ductors. Crawford [1] has discussed the properties of such
lines as well as their advantages, and has described a

family of TEM “cells” constructed at the National Bureau
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of Standards. A similar transmission line of this type, used

for purposes of exposing monkeys as well as large phan-

toms to HF-band (10–30-MHz) radiation fields has also

been described [2], [3]. Others [4] have used much smaller

rectangular lines of this type to investigate the interaction

of microwaves with isolated nerve cells at frequencies up

to 3 G Hz. The use of such lines for calibration of radia-

tion survey (hazard) meters as well as electric and mag-

netic field probes in the VHF and UHF bands has been

discussed by Crawford [5], Baird [6], and Asian [7]. A

series of these transmission lines is now manufactured

commercially by Instruments for Industries, Inc.,

Farmingdale, NY, and has been termed “Crawford Cells”

by the manufacturer.

The characteristic impedance of such transmission lines

has been quoted by Crawford [1] in terms of the fixed

dimensions of the line’s cross section (see Fig. 1 for

notation) as well as an unknown fringing capacitance per

unit length C;.

376.73
‘0= 4[w/(~–~)+q’/E] “ “ “

(1)

where c = 8.8542X 10– 12 F/m, assuming an air dielectric.

Crawford used time-domain reflectometry methods to ex-
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