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Parallel Line Microstrip Filters in an
Inhomogeneous Medium

DOMINIQUE POMPEI, OLIVIER BENEVELLO, anp EDOUARD RIVIER

Abstract—Parallel coupled microstrip lines in an inhomogeneous
medium are studied. The quasi-static capacitance is shown to be linear with
regard to the dielectric constant ¢,, simplifying the formalism used for
analyzing microstrip filters.

The electromagnetic advantages of the homogeneous medium carry over
to the inhomogeneous medium. This result is obtained by equalizing all the
velocities of the propagation modes.

I. INTRODUCTION

NUMBER OF interesting properties have been

found recently in the course of a study of microstrip
filters. Some of these properties facilitate study of these
filters; others should lead to new applications.

Microstrip filters in an inhomogeneous medium have
not been studied as fully as stripline filters in homoge-
neous medium, in spite of important basic papers devoted
to this subject [1]1-{6]. The design of microstrip filters at
frequencies above 1 GHz should take into account the
existence of hybrid modes [7]-{9]. In order to reduce the
problem at first, we made the usual assumption of a
quasi-TEM mode. Higher order modes are introduced
later, after the filter design using the quasi-TEM mode

[7HOL, [13].

II. SuMMARY OF THE NEW RESULTS

Many devices previously studied [3] have a set of N
parallel coupled propagating lines. In microstrip technol-
ogy, we are interested in a set of parallel microstrips
deposited on a dielectric substrate. The metallized lower
dielectric surface is grounded. The whole system is
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Fig. 1. Adjacent microstrip lines.

shielded by a conducting box (Fig. 1). Various filter
configurations are shown in Fig. 2. Our approach [10}-{12]
may be summarized as a) an extension of Kirchhoff’s
theory to a system of N parallel coupled transmission
lines, and b) the introduction of boundary conditions,
reducing the system to a two-port filter, whose response
will be calculated.
The new results may be summarized as follows.

1) Some parameters are perfectly linear with regard to
the substrate ¢,. This point should allow easier studies for
various values of e,.

2) A property of the various propagating modes allows
the application of a new and simple formalism, making it
possible to study filtering structures having a substantial
number of lines coupled together.

3) The parallel microstrip structures in an inhomoge-
neous medium behave like structures in a homogeneous
medium. The advantages of the homogeneous medium
(such as width and regularity of the band) are maintained,

0018-9480/78 /0400-0231$00.75 ©1978 IEEE
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Fig. 2. Microstrip filters using parallel coupled lines.

and the advantages of the inhomogeneous medium
(miniaturization) are also preserved.

III. RECAPITULATION OF THE GENERAL FORMALISM
CONSTRUCTED FOR FILTER ANALYSIS

A review of the earlier formalism [10}-{12] for quasi-
TEM modes will first be given.

A system of N parallel microstrip lines, Fig. 1, is char-
acterized by its matrix [E] of eigen and mutual electrical
influence coefficients

Ey E,-- Ey
[E]= E|12 Ezz\
E\y A ~ Eyy

and by its matrix [M] of eigen and mutual magnetic
influence coefficients

Ly My, - - My
[M]= ]:412 Lzz\
Min \\LNN

Let I,(z) and V,(z) (i=1,---,N) be the current in line i
and the voltage between line i and the ground at the
abscissa z.

Two equations in current and voltage may be formed.
d? 7
(;Z—z[U]+w2[E][M])I (Z)=O (1)
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Fig. 3. Symmetrical adjacent microstrip lines.
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[U] s the unit matrix, » is the angular frequency, and 1 (z)
and V(z) are the vectors of components ,(z) and V,(z)
(i=1,---,N).

Taking into account the formal analogy [11] of (1) and
(2) with Lagrange’s equations describing a coupled system
having N degrees of freedom, it is possible to say that:

1) The set of N coupled lines has N propagating eigen-
modes. There 1s a basis of eigenvectors in which (1) and
(2) are uncoupled.

2) Each mode J is obtained by applying to each line i/
an eigenvoltage ¥, (respectively, an eigencurrent I”), The
set of ¥/ (i=1,--+,N) gives the eigenvoltage vector V~.

3) An eigenphase velocity v/, identical on all the N
lines, corresponds to the eigenvector %8

If one puts
[G]=[E][M] 3)
the ¥ and v’ are directly related to the eigenvectors and
values of [G].

Let [E,] be the matrix [ E] in the case, purely hypotheti-
cal, where the dielectric substrate is air (e,=1). It is
known [14], [15] that, if the dielectric is not a magnetic
one

1 -1
()= 2]
As a basic tool for explaining the improvements, we

assume here the starting point of the previously published

formalism. It is characterized by the following.

c is light velocity in vacuum. (4)

1) The acquiring of a technique of numerical computa-
tion for [E,)] and [E], for each given configuration of
uniform parallel microstrip lines on a dielectric substrate
and in a shielding box. This computation has been ex-
tended to adjacent devices having eight coupled lines by
using a technique previously explained [16].

2) The determining of the eigenvectors and eigenvalues
of the operator

[6]=5[EI[E] ™ )

The above formalism allows us to treat any configura-
tion of coupled lines with different line widths w, and
different spacing between lines S, , ;.

In practice, this formalism is very difficult to apply
when the device has no symmetry with regard to vertical
mid plan (Fig. 3). It is much more difficult to apply when
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Fig. 4. Suspended microstrip lines.

the number of coupled lines is more than three. Indeed,
the computation of the eigenvalues of [G], absolutely any
matrix, becomes more and more difficult.

The properties we found recently, and which are shown
now, allow very important improvements in this for-
malism and particularly a very important simplification of
the calculations.

IV. MAaIN PROPERTIES IMPROVING FORMALISM

The results affect largely the adjacent lines, but we also
give information for suspended microstrip lines (Fig. 4).

A. Linearity in Terms of the Dielectric Constant

We studied the evolution of the matrix [ E] with regard
to a variation of the relative dielectric constant (¢,= 1-70).
This study is based on the numerical resolution of a large
number of configurations with as many as eight coupled
lines. We considered a wide range of parameters
A,B,H\/H,W,S, ., (Fig. 3), with asymmetrical struc-
tures (W,#W and S;;.,7S;;.1)- Tight and low cou-
plings are considered.

1) Property I: For a given configuration, the matrix [E]
is a linear function of the relative dielectric constant e,

[E]=(e—1)[A]+][E,] (6)

The matrix [4] depends on the dimensions of the struc-
ture but is independent of ¢,. This appears clearly on the
graphs giving the absolute values for particular
coefficients of the matrix [ E] versus ¢, for five (Fig. 5) and
six lines (Fig. 6). Many similar results can be quoted.

It is important to note that, with this property, having
calculated the electrical matrix [ E,] in vacuum and [E] for
one substrate, we can calculate [ E] for any e,.

Property I was partially published for one or two cou-
pled lines [17]. We have verified (6) for suspended micro-
strip coupled lines. We supply some data about this case
(Fig. 7) but study of these structures must be extended.

2) The matrices [E] and [E,] are real and symmetrical.
Simple algorithms to diagonalize these matrices may be
used. With such algorithms, we calculated the matrices
[E], and [E,}, for many configurations. We have consid-
cred structures from two to eight adjacent coupled lines
(Fig. 3) or from two to four suspended coupled lines (Fig.
4). They were calculated with many dielectric substrates
and with tight couplings.

Property II: For a given configuration, the diagona-
lized matrix [E,] is a linear function of the dielectric
relative constant ,.
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[E],=(e-D[4],+[E],- ™

The matrix [4], depends on the structure dimensions,
but not on ¢, We give graphs of the coefficients of the
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TABLE1
POTENTIAL (IN VOLTS) TO APPLY ON EACH LINE TO OBTAIN
EiGENMODES
NUMBER OF COUPLED EVEN  MODE ODD  MODE
LINES
Adjacent Lines + 0.75 -1 - 0.5 -1
+ 1 + 0.75 + 1 - 0.5
4 + 1 + 0.75 -1 + 0.5
+ 0.75 -t + 0.5 + 1
Adjacent Lines + 1 + 0.7 -1 + 0.8
0 + 0.9 - 0.8 -1
5 -1 + 1 o o
[ +0.9 + 0.8 + 1
+ 1 + 0.7 + 1 - 0.8
- 0.4
+ 0.8
-1
+ 0.8
- 0.4
Suspended lines + 0.5 + 0.5 - 0.5 - 0.5
+ 0.5 - 0.5 + 0.5 - 0.5
4 + 0.5 - 0.5 - 0.5 + 0.5
+ 0.5 + 0.5 + 0.5 + 0.5
Suspended lines + 0.57 - 0.42 - 0.707
+ 0.58 + 0.81 0
3 + 0.57 - 0.42 + 0.707

+ ) e 70 [N

Fig. 9. Coefficients of the matrix [E],. Six microstrip adjacent lines.
For geometrical dimensions, see Fig. 6.

matrix [E£], versus ¢, for five and six coupled lines (Figs. 8
and 9).

From the above results, having calculated the matrix
[E], for two particular values—one of which is ¢, = 1—the
general calculation of [E], becomes very easy.

This property will be important for the calculation of
the eigenmode velocities and for the improvement of the
formalism,

B. Property I1I—Similarity of the Eigenvectors of [E]| and
[E,]

From the two properties previously given and especially
the second one, we have shown that the matrices [E] and
[E,] have the same eigenvectors. With property II, we can
write

C=(¢—1a+C, (i=1,--+,N), N=number of lines.
®)
But, we also have
i>j=C>C,a>a,C,>C, (Figs. 8 and 9).

If Ty is the eigenvector of [ E] with the greatest eigenvalue
Cy, We have

<TN|[E] Ty>=Cy=(¢,—1)ay+ Con
If Ty is not an eigenvector of [E,] we have
TN E ] Twy<Coy

and with (6), we cannot obtain (8). Thus 7, must be an
eigenvector of [E ]. This demonstration is then repeated
for N—1, and so on. As an example, we give eigenvectors
of [E] and [E,] for two adjacent microstrip structures and
for two suspended microstrip structures (Table I).

V. SiMPLIFIED FORMALISM FOR STUDYING
MicrostrIpP FILTERS

A. Velocities of Propagation and Characteristic Impedance
Matrix

From property III, we can write many useful relations.
If we note [E], and [E,],, the diagonalized forms of the
matrices [E] and [E,], we have

[E],=[T]'[E][T]

[E.1=[T]"'[E][T]

®
(10)
So we obtain

(71716 T)= 5 [ELIE];'=[6],. ()

Thus [G] is diagonalizable and has the same eigenvectors
as[E] and [E,).

From [G], we can easily calculate the velocities v’ of
each propagating mode [12].
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[o]=c[[E]LE],']" (12)
with
v, 0
[o]=]
0 Sy

So the determining of velocities is greatly improved.
Then, from property II, it is possible to calculate the
velocities for all values of ¢,. This result is very important.
Similarly, [T] being the diagonalization matrix of [G],
we can show that the eigencurrents I” are the eigenvectors
of [E]and [E].
For the determining of filters, we introduced [14] a
characteristic impedance matrix [Z,] defined by

[E] [T BI[T]"

’
w

[Z]=

c

with w=pulsation of the wave (13)
B, 0O - 0 17
, B
[B]'=e[G],=
| 0 B |
[Z.] can be written in a diagonalized form
[[EL[E1)”
[Z.],= S (14)

The elements Z/ of [Z,], are the characteristic imped-
ances of the system, with as a particular case that of the
symmetric coupler

ch =Zoes
ZCII = Zoo’

even-mode characteristic impedance

odd-mode characteristic impedance.

B. Application of Property I1I to N Coupled Lines

Equations (1) and (2) have solutions [10] which are
generalizations of Kirchhoff’s relations for a single line.
From these equations, we have written the general form of
the impedance matrix [Z] for a system of N coupled lines
of length L.

From the relations given by property 111, we can obtain
a simpler formalism

_[Zc]d 0 -1
217 B 09
with
SRR [0]
‘Lo [T]|[exw (J[BIL) exp(—J[B]L)

(16)

where [U] is the unit matrix, and
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[ exp (JB'L) oo o |
0 exp (j8"'L)
exp (J[ B]L)= : .
0 exp (JBYL)

C. Application to Filters
If we know the N X N matrix [Z] defined by

VO |_iz[1O@
V(L) (L)

where 17(2) and T (z) are the voltage and current vectors
at the abcissa z (see (1) and (2)). We only have to apply at
the ends z=0 and z=L (Fig. 1) any adequate boundary
condition to construct a filter like those shown in Fig. 2.

[Z] degenerates in a 2 X2 impedance matrix [Z] of a
two-port system. Well-known transformations allow us to
obtain the scattering matrix [ S}, then the wanted transfer
function.

Important Note: In the whole study it is found that to
obtain the transfer function, the only fundamental opera-
tions are to calculate the eigenvalues and vectors of [E]
and [E,].

The above procedure being very simple, it is possible to
provide a looped program on a computer giving, by
successive corrections, a filter corresponding to a given
pattern. So analysis and synthesis may be coupled.

VI.

As we noted before, properties I and II resulted from a
systematic study of many configurations. This fact
allowed us to estimate the precision of results.

We noted therefore that the linearity of [E] as a func-
tion of the dielectric constant ¢, was well proved for the
coefficients of [E] such as E, ,, E;;,, E, ,,,. This fact is
less evident for the other coefficients E, ; (j > i+3), but it
is a consequence of the precision of the method; a change
in the mesh [12] could improve the result if necessary.

On the other hand, for the linearity of [ F,] as a function
of ¢, it has been very well proved in the various cases
studied with configurations having asymmetries in the
cross section.

This comes from the fact that diagonal terms of [E] are
much larger than terms such as E; , ;- - .

Finally, it can be noted that the first two properties
have been established by calculation on a computer as
opposed to property III which has been mathematically
proved from the two previous ones.

REMARKS ON THE ABOVE PROPERTIES

VII. EQUALIZATION OF EIGENMODE PHASE

VELOCITIES
A. Geometrical Method

Let us consider a configuration with H, = H (Fig. 10).
As [A4] is independent of the dielectric constant, it is
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Fig. 10. Adjacent microstrip lines with H,=H.

unchanged when the positions of the dielectric and the air
are interchanged.
In the first case (Fig. 10(a)) we have

[E]=(—D[A4]+[E,]
In the second case (Fig. 10(b)) we have
[E]=(e—1D[A4]+[E,]

If we superimpose the two cases, we get
[E]+[E]=2(e—1)[4]+2[E,]=(e+1)[E,]
because it is a similar process of superposing a homoge-
neous configuration filled with air (¢,=1), and a homoge-

neous configuration filled with a dielectric €. So it is
mferred that

if Hj=H, then [A]=3[E,]. (17

Let us consider now (12)
~171/2
[v] =c[ [E]JLE], 1] :
From (17) we get

€+1
[E]=——[£]

So we note that

€ +1\1/2
[v]=( ) c[ U], [ U] being the unitary matrix.

2
(18)

Therefore, if H,= H, whatever the number of coupled
lines and whatever the geometrical configuration, all the
propagation velocities of various modes are equal. This
property appears to be very interesting because it induces
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Fig. 11. Velocities of propagation. Six symmetrical adjacent microstrip
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Fig. 12. Velocities of propagation. Three symmetrical adjacent lines.
€,=9.6. VEven mode. MEven mode. ®0dd mode.

a further simplification of the previous formalism; indeed,
we obtain in this case the same properties as for the
homogeneous case.

Thus for example, we know that the directivity of
couplers in an inhomogencous medium is generally bad;
the attenuation of the directivity with increasing frequen-
cies comes from the divergence between the two propaga-
tion velocities of even and odd modes.

In the case H,=H we will obtain a very interesting
improvement.

Furthermore, we note that this equalization of velocities
has been previously considered after experimental results
by some authors [18]{20], but it remained to our knowl-
edge only a supposition.

We give some graphs describing the normalized mode
velocity as a function of H,/H. On these graphs the
equalization of velocities, when H,=H, is easily seen
(Figs. 11 and 12).

B. Egqualization of Phase Velocities with an Overlay Method

Another method can be used for equalizing the veloci-
ties; it consists of coating the strip with a thin layer of



POMPEI ef al.: PARALLEL LINE MICROSTRIP FILTERS

€, -Wen :s'
B €. €, :5
€ K

w,
g

Fig. 13. Microstrip suspended lines with overlay dielectric.

%G
134

AB>3 Wg =117 5/g=0.235

£ =5
11

10

09

07

05

[4] 02 04 06
Fig. 14,

o8 10

=V,/=V, for two suspended microstrip lines.

dielectric substrate with a larger ¢ (Fig. 13). This tech-
nique allows us to obtain a matrix [E] equivalent to the
matrix of a homogeneous medium, because the constant
€. Of the propagation medium is greatly altered.

The equalization of the velocities can be obtained either
by varying the thickness of the layer for a fixed value of
the permittivity, or by varying the dielectric constant of
the overlay for a fixed value of its thickness (Fig. 14) for
suspended microstrip lines.

C. Characteristic Impedances

In this study we were led to calculate the electrical
characteristics of many coupled line systems. So we have
plotted many graphs giving the characteristic impedance
of each propagating mode as a function of geometrical
dimensions.

We give here graphs for a coupler in the adjacent
technique, with an equalization of velocities (H,=H)
(Fig. 15) and for a three coupled line device (Fig. 16).

In this last case, it is evident that there are two even-
propagating modes and an odd one. We can provide
many other similar graphs.

VIIL

New results about N coupled microstrip lines in an
inhomogeneous medium appear in this paper. The eigen-
modes of propagation are well acquired; their velocities

CONCLUSION

237

Zo, ()

120 €,~3.80

80 A
/HG

60

40

o
g

:/
=
Lz
//'
8
¥
-
.'\/%
v
N

20 a0 «0 50 &0 L

Fig. 16. Z,, versus Z,, for three adjacent microstrip lines with H,= H.

are easily calculated. The problem is simplified with the
linearity of the matrices [E] and [E], versus ¢,.

All these properties improve the theory of the micro-
strip filters. In particular, the equality of the eigenveloci-
ties, when the dielectric substrate and the vacuum have
the same thickness, is clearly demonstrated.
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The Characteristic .Impedance of Rectangular
Transmission Lines with Thin Center
Conductor and Air Dielectric

CLAUDE M. WEIL, MEMBER, IEEE

Abstract—The characteristic impedance of large-scale rectangular strip
transmission line facilities used for such purposes as EMI susceptibility
testing, biological exposures, etc., is discussed. These lines are char-
acterized by a thin center conductor and an air dielectric. Impedance data
obtained by earlier workers, using different analytical and numerical
techniques, are reviewed and compared. Exact data are available for the
problem involving a center conductor of zero thickness, while for the
center conductor of finite thickness, data are available which are accurate
to less than 1.25 percent.

I. INTRODUCTION

ECTANGULAR COAXIAL transmission lines

which contain a propagating transverse electromag-
netic (TEM) field are finding increasing application in
such areas as EM susceptibility and emissions testing,
biological effects of RF exposure, and calibration of
radiation survey meters and electric field probes. Such
lines possess an air dielectric with a thin center conductor,
thereby maximizing the test space available between con-
ductors. Crawford [1] has discussed the properties of such
lines as well as their advantages, and has described a
family of TEM “cells” constructed at the National Bureau

Manuscript received April 29, 1977; revised October 14, 1977.
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of Standards. A similar transmission line of this type, used
for purposes of exposing monkeys as well as large phan-
toms to HF-band (10-30-MHz) radiation fields has also
been described [2], [3]. Others [4] have used much smaller
rectangular lines of this type to investigate the interaction
of microwaves with isolated nerve cells at frequencies up
to 3 GHz. The use of such lines for calibration of radia-
tion survey (hazard) meters as well as electric and mag-
netic field probes in the VHF and UHF bands has been
discussed by Crawford [5], Baird [6], and Aslan [7]. A
series of these transmission lines is now manufactured
commercially by Instruments for Industries, Inc.,
Farmingdale, NY, and has been termed “Crawford Cells”
by the manufacturer.

The characteristic impedance of such transmission lines
has been quoted by Crawford [1] in terms of the fixed
dimensions of the line’s cross section (see Fig. 1 for
notation) as well as an unknown fringing capacitance per
unit length Cy.

7 376.73
°4[w/(b—1)+C//€]

where €=28.8542x 1072 F/m, assuming an air dielectric.
Crawford used time-domain reflectometry methods to ex-

(1)
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